Performance Based Novel Techniques for Semantic Web Mining
نویسندگان
چکیده
The explosive growth in the size and use of the World Wide Web continuously creates new great challenges and needs. The need for predicting the users' preferences in order to expedite and improve the browsing though a site can be achieved through personalizing of the websites. Most of the research efforts in web personalization correspond to the evolution of extensive research in web usage mining, i.e. the exploitation of the navigational patterns of the web site’s visitors. When a personalization system relies solely on usage-based results, however, valuable information conceptually related to what is finally recommended may be missed. Moreover, the structural properties of the web site are often disregarded. In this paper, we propose novel techniques that use the content semantics and the structural properties of a web site in order to improve the effectiveness of web personalization. In the first part of our work we present standing for Semantic Web Personalization, a personalization system that integrates usage data with content semantics, expressed in ontology terms, in order to compute semantically enhanced navigational patterns and effectively generate useful recommendations. To the best of our knowledge, our proposed technique is the only semantic web personalization system that may be used by non-semantic web sites. In the second part of our work, we present a novel approach for enhancing the quality of recommendations based on the underlying structure of a web site. We introduce UPR (Usage-based PageRank), a PageRank-style algorithm that relies on the recorded usage data and link analysis techniques. Overall, we demonstrate that our proposed hybrid personalization framework results in more objective and representative predictions than existing techniques. KeywordsWeb personalization, Semantic web and Recommender systems.
منابع مشابه
Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems
One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...
متن کاملA Novel Architecture for Detecting Phishing Webpages using Cost-based Feature Selection
Phishing is one of the luring techniques used to exploit personal information. A phishing webpage detection system (PWDS) extracts features to determine whether it is a phishing webpage or not. Selecting appropriate features improves the performance of PWDS. Performance criteria are detection accuracy and system response time. The major time consumed by PWDS arises from feature extraction that ...
متن کاملAHP Techniques for Trust Evaluation in Semantic Web
The increasing reliance on information gathered from the web and other internet technologies raise the issue of trust. Through the development of semantic Web, One major difficulty is that, by its very nature, the semantic web is a large, uncensored system to which anyone may contribute. This raises the question of how much credence to give each resource. Each user knows the trustworthiness of ...
متن کاملDevelopment of a Combined System Based on Data Mining and Semantic Web for the Diagnosis of Autism
Introduction: Autism is a nervous system disorder, and since there is no direct diagnosis for it, data mining can help diagnose the disease. Ontology as a backbone of the semantic web, a knowledge database with shareability and reusability, can be a confirmation of the correctness of disease diagnosis systems. This study aimed to provide a system for diagnosing autistic children with a combinat...
متن کاملAHP Techniques for Trust Evaluation in Semantic Web
The increasing reliance on information gathered from the web and other internet technologies raise the issue of trust. Through the development of semantic Web, One major difficulty is that, by its very nature, the semantic web is a large, uncensored system to which anyone may contribute. This raises the question of how much credence to give each resource. Each user knows the trustworthiness of ...
متن کامل